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Abstract In this paper, an approach based on the variational iteration method (VIM) is proposed

with an auxiliary parameter to predict the multiplicity of the solutions of homogeneous nonlinear

ordinary differential equations with boundary conditions. The proposed approach is capable to pre-

dict and calculate all branches of the solutions simultaneously. Four practical problems are chosen

to show the efficiency and importance of the proposed method. The proposed approach successfully

detects multiple solutions to Bratu’s problem, the model of mixed convection flows in a vertical

channel, the nonlinear model of diffusion and reaction in porous catalysts and the nonlinear reac-

tive transport model.
ª 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
1. Introduction

Inokuti et al. (1978) proposed a general Lagrange multiplier

method to solve nonlinear problems, which was intended to
solve problems in quantum mechanics. Subsequently, He
(1997) has modified the method to an iterative method and

named it variational iteration method (VIM) and it has been
presented by many authors to be a powerful mathematical tool
for solving various types of nonlinear problems which repre-
sent plenty of modern science branches (He, 2012a, 2006; Yang

and Baleanu, 2013; Wu, 2012). But this method cannot provide
us with a simple way to adjust and control the convergence
region and rate of giving approximate series, this reason was
a strong motivation for authors to construct the variational
iteration algorithms with an auxiliary parameter h which

proves very effective to control the convergence region of an
approximate solution as (He, 2012b; Hosseini et al., 2011;
Turkyilmazoglu, 2011; Ghaneai et al., 2012; Hosseini et al.,
2010) and others.

It is very important to predict and calculate all solutions of
nonlinear differential equations with boundary conditions in
engineering and physical sciences. In this regard, many authors

constructed the algorithms that are based on the homotopy
analysis method (HAM) for multiple solution of nonlinear
boundary value problems as Li and Liao, 2005; Abbasbandy

and Shivanian, 2011; Abbasbandy et al., 2009; Hassan and
El-Tawil, 2011; Hassan and Semary, 2013 and others. How-
ever, in this work, the algorithm based on the variational iter-
ation method (VIM) with an auxiliary parameter is presented

in prediction and actual determination of multiple solutions
of nonlinear boundary value problems. To show the efficiency
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and importance of the proposed method, four practical prob-
lems are solved. A problem arising in mixed convection flows
in a vertical channel (Barletta, 1999; Barletta et al., 2005),

Bratu’s problem (Wazwaz, 2012; Jalilian, 2010; Wazwaz,
2005), the nonlinear model of diffusion and reaction in porous
catalysts (Sun et al., 2004; Abbasbandy, 2008; Magyari, 2008)

and the nonlinear reactive transport model (Ellery and
Simpson, 2011; Vosoughi et al., 2012), respectively and all of
them admit multiple (dual) solutions which is why these mod-

els have been chosen to accomplish the article’s goal.
2. Analysis of the method

Consider the nonlinear differential equation

Lu½ðtÞ� þN½uðtÞ� ¼ gðtÞ; ð2:1Þ

where L is a linear operator, N is a nonlinear operator and g(t)

is an inhomogeneous term. According to the variational itera-
tion method, one can construct an iteration formula for the
Eq. (2.1) as follows:

umþ1ðtÞ¼ umðtÞþ
Z t

0

kðsÞfL½umðsÞ�þN½~umðsÞ��gðsÞgds; mP 0;

ð2:2Þ

where k(s) is a general Lagrange multiplier, ~umðsÞ is considered
as a restricted variation (He, 1998; He, 1999; Wazwaz, 2007;
Wazwaz, 2009) which means d~umðsÞ ¼ 0. To solve (2.1) by

He’s VIM (He, 1997), we first determine the Lagrange multi-
plier k(s) that can be identified optimally via variational the-
ory. Then, the successive approximations um+1(t), m P 0 of
the solution u(t) can be readily obtained upon using the ob-

tained Lagrange multiplier and by using any selective function
u0(t). The initial approximation u0(t) may be selected by any
function that just satisfies at least the initial and boundary con-

ditions. With k(s) to be determined, several approximations
um+1(t), m P 0, follow immediately. Consequently, the exact
solution may be obtained by using the form

uðtÞ ¼ lim
m!1

umðtÞ: ð2:3Þ

Ghaneai et al. (2012) constructed a variational iteration algo-
rithm with an auxiliary parameter in the form

umþ1ðtÞ ¼ umðtÞ þ h

Z t

0

kðsÞfL½umðsÞ� þN½~umðsÞ� � gðsÞgds;

m P 0; ð2:4Þ

where h is an auxiliary parameter. The proposed approach to
predict the multiplicity of the solutions of homogeneous non-

linear ordinary differential equations with boundary condi-
tions based on the algorithm (2.4). Let the problem (2.1) be
the form

dsuðtÞ
dts
þN½uðtÞ� ¼ 0; s P 2 ð2:5Þ

with the boundary condition

diuðtÞ
dti

����
t¼0
¼ bi; i ¼ 0; 1; . . . ; s� 2; uðaÞ ¼ b: ð2:6Þ

Firstly by adding the new condition with unknown param-
eter a in the boundary conditions (2.6) and splitting into
diuðtÞ
dti

����
t¼0
¼ bi;

ds�1uðtÞ
dts�1

����
t¼0
¼ a; ð2:7Þ

uðaÞ ¼ b; ð2:8Þ

where u(a) = b is called the forcing condition that comes from
original conditions (2.6). By calculating variation with respect

to um(s) for variational iteration formula (2.2) on the problem
(2.5) with the new initial conditions (2.7), the Lagrange multi-
plier k(s) can be identified as (He, 1998; He, 1999; Wazwaz,

2007; Wazwaz, 2009)

kðsÞ ¼ �ðt� sÞs�1

ðs� 1Þ! ; ð2:9Þ

then the iteration formula (2.4) becomes

umþ1ðt; a; hÞ ¼ umðt; a; hÞ � h

Z t

0

� ðt� sÞs�1

ðs� 1Þ!
dsumðs; a; hÞ

dss
þN½umðs; a; hÞ�

� �
ds:

ð2:10Þ

It should be emphasized that um+1(t,a,h) can be computed
by symbolic software programs such as Mathematica or Ma-

ple, starting by an initial approximation u0(t,a) which satisfies
at least the initial conditions (2.7). We obtain the approximate
solution um+1(t,a,h) for the problem (2.5) and (2.7), but there

are still two unknown parameters in the approximate solution
um+1 (t,a,h) the unknown parameter a and the auxiliary
parameter h, should be determined. The forcing condition

(2.8) of the boundary value problem (2.5) reads

uðaÞ � umþ1ða; a; hÞ ¼ b: ð2:11Þ

The Eq. (2.11) has two unknown parameters a and h which
control the approximation um+1(t,a,h) that converges to the

exact solution. According to Eq. (2.11), a as function of h,
by drawing the Eq. (2.11) gives the so called h-curve. The num-
ber of such horizontal plateaus where a(h) becomes constant,
gives the multiplicity of the solutions. Also the horizontal pla-

teaus indicate the convergence because the unknown parame-
ter a is a constant value then a horizontal line segment in
h-curve which corresponds to the valid region of h.

3. Applications

3.1. Bratu’s problem

Consider Bratu’s problem in one-dimensional planar:

d2u

dx2
þ beu ¼ 0; ð3:12Þ

uð0Þ ¼ uð1Þ ¼ 0; b > 0: ð3:13Þ

Bratu’s problem (3.12) nonlinear two boundary value prob-

lem with strong nonlinear term eu and parameter b, appears in
a number of applications such as the fuel ignition model of the
thermal combustion theory, the model of thermal reaction pro-
cess, the Chandrasekhar model of the expansion of the Uni-

verse, questions in geometry and relativity about the
Chandrasekhar model, chemical reaction theory, radiative
heat transfer and nanotechnology (Wazwaz, 2012; Jalilian,

2010; Wazwaz, 2005). The analytical solution of (3.12) and
(3.13) can be put in the following form:



Figure 1 Plot a as a function of h at m= 5 in (3.22) of Bratu’s

problem (3.16).
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uðxÞ ¼ �2 ln
cosh x� 1

2

� �
h
2

� �
cosh h

4

� �
 !

; ð3:14Þ

where h is a solution of h ¼
ffiffiffiffiffiffi
2b
p

cosh h
4

� �
. Bratu’s problem has

no, one or two solutions when b > bc, b = bc and b < bc
respectively, where the critical value bc satisfies the equation
1 ¼ 1

4

ffiffiffiffiffiffiffi
2bc

p
sinh h

4

� �
and also bc = 3.513830719 (Wazwaz,

2012; Jalilian, 2010; Wazwaz, 2005). Differentiating (3.14) with

respect to x one time and setting x = 0 give

u0ð0Þ ¼ h tanh
h
4

� 	
: ð3:15Þ

In this study, we apply the present formula (2.10) to detect
dual solutions to Bratu’s problem for b = 3.

Direct application by the present formula (2.10) to Bratu’s
problem (3.12) is very difficult, because they contain the strong
nonlinear term eu. To overcome this difficulty, differentiating
(3.12) with respect to x one time, for b = 3, Bratu’s problem

(3.12) and (3.13) becomes

d3u

dx3
� u0ðxÞu00ðxÞ ¼ 0; ð3:16Þ

uð0Þ ¼ uð1Þ ¼ 0; u00ð0Þ ¼ �3: ð3:17Þ

Firstly split the boundary conditions (3.17) to

uð0Þ ¼ 0; u0ð0Þ ¼ a; u00ð0Þ ¼ �3; ð3:18Þ

and the forcing condition

uð1Þ ¼ 0: ð3:19Þ

Now, we apply the formula (2.10), in Eqs. (3.16) and (3.18),

then

umþ1ðx;a;hÞ¼umðx;a;hÞ�h

Z x

0

�ðx�sÞ2

2

d3umðs;a;hÞ
ds3

�dumðsÞ
ds

d2umðs;a;h;Þ
ds2

� �
ds;

ð3:20Þ

according to the conditions (3.18), we choose the initial
approximation u0(x,a) as:

u0ðx; aÞ ¼ ax� 3x2

2
: ð3:21Þ

Using the Mathematica software, starting with u0(x,a), the
successive approximations um+1(x,a,h), m P 0 , can be as
follows

u1ðx;a;hÞ¼ xa�3x2

2
�1

2
hx3aþ3hx4

8
;

u2ðx;a;hÞ¼ xa�3x2

2
þx3 �haþh2a

2

� 	
þx4 3h

4
�3h2

8
�h2a2

8

� 	

þ 3

10
h2x5aþx6 �3h

2

20
þ3h3a2

80

� 	

� 3

56
h3x7aþ9h3x8

448
;

and so on, with the help of additional forcing condition (3.19),
then

umþ1ð1; a; hÞ � uð1Þ ¼ 0: ð3:22Þ

and
Absolute error ¼ ju6ðx; a; hÞ � uðxÞj; ð3:23Þ

where u(x) is the exact solution (3.14). The exact values of u0(0)
from Eq. (3.15) are 2.319602 and 6.103 for b = 3. We got a as

a function of h from (3.22) that is plotted in Fig. 1. From
Fig. 1, two values of a are clear (two line segments give con-
stant values of a) the first and second intervals branch solution
are [0.6,1.2] and [0.9,1.1], respectively, when h= 1.02, the first

and second branch solutions of u0(0) = a are 2.319609 and
6.109, respectively. Comparing the values of u0(0) by the pres-
ent approach and exact solution illustrates the accuracy of the

present approach. Also, to show the accuracy of these dual
approximate solutions, the absolute errors (3.23) for first and
second solutions are shown in Figs. 2 and 3, respectively.

The Figs. 2 and 3 show the present approach success to calcu-
late the first and second solutions of Bratu’s problem (3.12) for
b = 3 and this means that the approach used is capable of

detecting dual solution, also Fig. 3 shows effect of the auxiliary
parameter h, by changing h from 1 to 1.02 the absolute error
(3.23) is improved.

3.2. Mixed convection flows in a vertical channel

The aim of this section is to apply the present approach to de-
tect the multiple solutions of a kind of model in mixed convec-

tion flows namely combined forced and free flow in the fully
developed region of a vertical channel with isothermal walls
kept at the same temperature (Barletta, 1999; Barletta et al.,

2005). In this model, the fluid properties are assumed to be
constant and the viscous dissipation effect is taken into ac-
count. The set of governing balance equations for the velocity

field is reduced to

d4u

dy4
¼ E

16

du

dy

� 	2

; ð3:24Þ

with the boundary conditions



Figure 2 The absolute error (3.23) for the first branch solution

of Bratu’s problem (3.16) when h= 1.
Figure 3 The absolute error (3.23) for the second branch

solution of Bratu’s problem (3.16) when h= 1 and h= 1.02.

Figure 4 Plot a as a function of h at m= 6 in (3.32) for E = 40.

30 M.S. Semary, H.N. Hassan
u0ð0Þ ¼ u000ð0Þ ¼ uð1Þ ¼ 0;

Z 1

0

uðyÞdy ¼ 1 ð3:25Þ

In the case E = 0, the Eqs. (3.24) and (3.25) are easily
solved and admit the unique solution

uðyÞ ¼ 3

2
ð1� y2Þ: ð3:26Þ

It has been shown in Abbasbandy and Shivanian, 2011;
Barletta, 1999; Barletta et al., 2005 by semi-analytic and

numerical methods that Eqs. (3.24) and (3.25) admit dual solu-
tions for any given E in the interval ( �1,0) [ (0,Emax) in
which Emax @ 228.128. According to the initial conditions

(2.7), the boundary condition (3.25), becomes

u0ð0Þ ¼ u000ð0Þ ¼ 0; uð0Þ ¼ c; u00ð0Þ ¼ a; ð3:27Þ

where c and a are the unknown parameters and the additional
forcing conditions

uð1Þ ¼ 0; ð3:28ÞZ 1

0

uðyÞdy ¼ 1: ð3:29Þ

Now, we apply the formula (2.10), in equations (3.24) and

(3.27), then

umþ1ðy;a;c;hÞ¼umðy;a;c;hÞ�h

Z y

0

�ðy�sÞ3

6

d4umðs;a;cÞ
ds4

� E

16

dumðs;a;cÞ
ds

� 	2
( )

ds;

ð3:30Þ

according to the conditions (3.27), we choose the initial

approximation u0(y,a,c) as:

u0ðy; a; cÞ ¼
1

2
ðay2 þ 2cÞ: ð3:31Þ

Using the software of Wolfram’s Mathematica, starting
with u0 (y,a,c), then, the successive approximations um+1

(y,a,c,h), m P 0, as follows

u1ðy;a;c;hÞ¼ cþy2a
2
þEhy6a2

5760
;

u2ðy;a;c;hÞ¼ cþy2a
2
þy6

Eha2

2880
�Eh2a2

5760

� 	
þE2h2y10a3

38707200
þ E3h3y14a4

354248294400
;

and so on, with the help of additional forcing conditions (3.28)
and (3.29), then
Z 1

0

umþ1ðy; a; c;E; hÞdy �
Z 1

0

uðyÞdy ¼ 1 ð3:32Þ

umþ1ð1; a; c;E; hÞ � uð1Þ ¼ 0: ð3:33Þ

Using the Eq. (3.33) to delete the unknown parameter c of

the Eq. (3.32) so that it contains only two unknown parame-
ters a and h. Now, we consider a case study when E = 40.
According to the Eq. (3.32), the unknown parameter a as a

function of the auxiliary parameter h, has been plotted in the
h-range [�0.5,2.5] in Fig. 4, for m= 6 and E = 40. Two a-pla-
teaus (two line segments give constant values of a) can be iden-
tified in this figure, this means that there are two solutions.

From Fig. 5(a) it is clear that the valid region of h for the first
branch solution is [0.5,1.5], also from Fig. 5(b) it is clear that
the valid region of h for the second branch solution is

[0.8,1.2]. Figs. 6 and 7 plot a as a function of the auxiliary
parameter h at m = 6 in Eq. (3.32) for different values of E,
these figures show the two solutions of a, this means that the

approach used is capable of detecting dual solution.
Table 1 Comparison between Predictor homotopy analysis

method (PHAM) (Abbasbandy and Shivanian, 2011) and the



Figure 5 Plot a as a function of h at m = 6 in (3.32) for E = 40, (a) the first branch solution and (b) the second branch solution.
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present approach when m = 6 and h = 1 for the value of

u00(0) = a for different values of E, from the table it is clear
that results very close to the results of Abbasbandy and Shiva-
nian, 2011, despite the number of iterations m= 6 are very few

compared to the number of iterations m = 25 in (Abbasbandy
and Shivanian, 2011).

3.3. The nonlinear model of diffusion and reaction in porous

catalysts

The nonlinear model investigated recently (Sun et al., 2004;

Abbasbandy, 2008; Magyari, 2008) describes the steady diffu-
sion-reaction regime in a porous slab with parallel plane
boundaries. In dimensionless variables the basic boundary va-

lue problem reads

u00ðxÞ � u2u�1 ¼ 0; ð3:34Þ
u0ð0Þ ¼ 0; uð1Þ ¼ 1: ð3:35Þ

As it has been shown in Magyari, 2008, the exact solution
of the boundary value problem (3.34) can be given in the im-

plicit form

x ¼ a
iu

ffiffiffi
p
2

r
erf i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

u

a


 �r� 	
; ð3:36Þ

where a = u(0) and erf(. . .) denotes the error function. the Eq.
(3.36) can also be inverted to the explicit form
Figure 6 (a, b) Plot a as a function of h at m=
u ¼ a exp � Inverf

ffiffiffi
2

p

r
i

a
ux

 !" #28<
:

9=
;; ð3:37Þ

where Inverf (. . .) denotes the inverse of the error function
(which can be handled by using for e.g. the software of Wol-

fram’s Mathematica) and from Eq. (3.38) the possible values
of a can be determined.

1 ¼ a
iu

ffiffiffi
p
2

r
erf i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

a

� 	s !
: ð3:38Þ

We apply the present approach to detect dual solution of
the problem (3.34) and (3.35) for a case study of u = 0.7,
firstly split the boundary conditions (3.35) to

uð0Þ ¼ a; u0ð0Þ ¼ 0 ð3:39Þ

and the forcing condition

uð1Þ ¼ 1: ð3:40Þ

Now, we apply the formula (2.10), in equations. (3.34) and

(3.39), then

umþ1ðx; a; hÞ ¼ umðx; a; hÞ � h

Z x

0

ðx

� sÞ d2umðs; aÞ
ds2

umðs; aÞ � u2

� �
ds; ð3:41Þ
6 in (3.32) for different values of positive E.



Table 1 Comparison between the present approach and the predictor homotopy analysis method (PHAM) (Abbasbandy and

Shivanian, 2011) of the value of u00(0) = a for different values of E.

E First branch solution of a Second branch solution of a

Present algorithm PHAM Present algorithm PHAM

�300 �2.244673 �2.24467 14.40219 14.4022

�200 �2.429229 �2.42923 20.138303 20.1383

�80 �2.725278 �2.72528 45.35358 45.3536

�20 �2.9230 �2.923 170.03931 170.039

20 �3.084108 �3.08411 �161.7259 �161.726
80 �3.394693 �3.39469 �36.92681 �36.9268
100 �3.525808 �3.52581 �28.49296 �28.493
200 �4.764798 �4.7648 �10.63485 �10.6349
228 �6.503207 �6.50321 �6.851835 �6.85183

Figure 7 (a, b) Plot a as a function of h at m = 6 in (3.32) for different values of negative E.
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according to the conditions (3.39), we choose the initial
approximation u0(x,a) as:

u0ðx; aÞ ¼ a: ð3:42Þ

Using the software ofWolfram’sMathematica, starting with
u0 (x,a), the successive approximations um+1(x,a,h), m> 0 , as

follow

u1ðx; a; hÞ ¼ aþ 49hx2

200
;

u2ðx; a; hÞ ¼ aþ x2 49h

100
� 49h2a

200

� 	
� 2401h3x4

240000
;

and so on. With the help of the additional forcing condition
(3.40), becomes

umþ1ð1; a; hÞ � uð1Þ ¼ 1; ð3:43Þ

and

Absolute error ¼ x� a
iu

ffiffiffi
p
2

r
erf i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

u8ðx; a; hÞ
a

� 	s !�����
�����:
ð3:44Þ

We consider a case study consist of u = 0.7, exactly from
Eq. (3.38) the values of unknown parameter a are 0.65415

and 0.2078. Plot of a as function of h according to Eq. (3.43)
for m = 7 is shown in Fig. 8. The number of such horizontal
plateaus where a(h) becomes constant, gives the multiplicity

of the solutions. Two a-plateaus can be identified in this figure,
namely a = 0.65417 in the range [1,1.5] of h and a = 0.2073 in
the range [1.75,2] of h. Comparing the values of a by the pres-

ent approach against to exact solution illustrates the accuracy
of the present approach. Also, to show the accuracy of these
dual approximate solutions, we have shown the absolute errors

(3.44) for first and second solutions in Figs. 9 and 10, respec-
tively. The figures show the present approach success to calcu-
late first and second branch solutions of the problem (3.34) at
u = 0.7, this means that the approach used is capable of

detecting dual solution.

3.4. The nonlinear reactive transport model

Consider dimensionless steady state reactive transport model
which is governed by (Ellery and Simpson, 2011)

u00ðxÞ � Pu0ðxÞ � AuðxÞ
Bþ uðxÞ ¼ 0; ð3:45Þ

with boundary conditions

u0ð0Þ ¼ 0; uð1Þ ¼ 1: ð3:46Þ



Figure 8 Plot a as a function of h at m = 7 in (3.43) for the

problem (3.34) at u = 0.7.

Figure 9 The absolute error (3.44) of the first branch solution of

the problem (3.34) at h= 1.75.

Figure 10 The absolute error (3.44) of the second branch

solution of the problem (3.34) at h= 1.

Figure 11 Plot a as a function of h at m= 6 in (3.51) for the

problem (3.45).
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The problem (3.45), recently introduced by Ellery and
Simpson (2011) , is a kind of modification of the primer model
so-called nonlinear reaction–diffusion model in porous cata-

lysts which has been used to study porous catalyst pellets
and more, it has been analyzed by different methods (Ellery
and Simpson, 2011; Vosoughi et al., 2012). This model encodes

a number of important engineering processes including several
applications in chemical engineering (Aris, 1975; Henley and
Rosen, 1969) and environmental engineering (Clement et al.,

1998; Zheng and Bennett, 2002). In Vosoughi et al., 2012 the
authors show that the problem has two solutions when
P = 0, A= 0.5 and B = �0.2, we apply the present approach

to detect the dual solutions of the problem if the case consists
of P = 0, A= 0.5 and B = �0.2. According to the initial con-
ditions (2.7) the boundary condition (3.46), becomes

u0ð0Þ ¼ 0; uð0Þ ¼ a; ð3:47Þ

where a is the unknown parameter and the additional forcing
condition

uð1Þ ¼ 1: ð3:48Þ

Now, we apply the formula (2.10), in equations. (3.45) and
(3.47) when P = 0, A = 0.5 and B = �0.2, then

umþ1ðx; a; hÞ ¼ umðx; a; hÞ � h

Z x

0

ðx� sÞ �0:2 d
2umðs; aÞ
ds2

�

þ umðs; aÞ
d2umðs; aÞ

ds2
� 0:5umðs; aÞ

�
ds; ð3:49Þ

according to the conditions (3.47), we choose the initial

approximation u0(x,a) as:

u0ðx; aÞ ¼ aþ x2: ð3:50Þ

Using the software of Wolfram’s Mathematica, starting

with u0 (x,a), then, the successive approximations um+1

(x,a,h), m P 0, as follows



Figure 12 The residual error (3.52) for the problem (3.45) when h= 1.2. (a) The first branch and (b) the second branch.
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5
�3ha

2
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� 3
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;

and so on. With the help of the additional forcing condition

(3.48), becomes

umþ1ð1; a; hÞ � uð1Þ ¼ 1: ð3:51Þ

According to the Eq. (3.51), a as a function of the auxiliary
parameter h has been plotted in the h-range [0,2] implicitly in

Fig. 11. Two a-plateaus can be identified in this figure, namely
a = 0.23 in the range [1.2,1.7] of h and a = 0.65 in the range
[1.2,1.4] of h. To show the accuracy of these dual approximate

solutions, we have shown the residual error R(x,a,h) (3.52) for
these solutions in Fig. 12.

Rðx; a; hÞ ¼ u007ðx; a; hÞu7ðx; a; hÞ � 0:2 u007ðx; a; hÞ
� 0:5 u7ðx; a; hÞ: ð3:52Þ
4. Conclusions

The presented approach is proposed based on a variational

iteration method with an auxiliary parameter not only to pre-
dict the existence of multiple solutions, but also to calculate all
branches of solutions effectively at the same time. The most

important advantage in this work is using a fixed iteration for-
mula to predict the multiplicity of the solutions of nonlinear
homogeneous ordinary differential equations with boundary

conditions and using an auxiliary parameter, that provides
us with a simple way to control the convergence region and
rate of giving approximate series. The scheme is tested on four
nonlinear practical differential equations. The results demon-

strate reliability and efficiency of the algorithm developed.
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